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Directional radiation and scattering play an essential role in light manipulation for
various applications in integrated nanophotonics, antenna and metasurface designs,
quantum optics, etc. The most elemental system with this property is the class of
directional dipoles, including the circular dipole, Huygens dipole, and Janus dipole.
A unified realization of all three dipole types and a mechanism to freely switch
among them are previously unreported, yet highly desirable for developing compact
and multifunctional directional sources. Here, we theoretically and experimentally
demonstrate that the synergy of chirality and anisotropy can give rise to all three
directional dipoles in one structure at the same frequency under linearly polarized plane
wave excitations. This mechanism enables a simple helix particle to serve as a directional
dipole dice (DDD), achieving selective manipulation of optical directionality via
different “faces” of the particle. We employ three “faces” of the DDD to realize
face-multiplexed routing of guided waves in three orthogonal directions with the
directionality determined by spin, power flow, and reactive power, respectively. This
construction of the complete directionality space can enable high-dimensional control
of both near-field and far-field directionality with broad applications in photonic
integrated circuits, quantum information processing, and subwavelength-resolution
imaging.

directional dipoles | chirality | anisotropy | light routing

Controlling the propagation direction of light to achieve directional radiation or
scattering is a key objective of light manipulations, with important applications in
almost every aspect of photonics and plasmonics (1–6). Far-field directional radiation
can be realized by applying the design principle of high-directivity antennas (7, 8)
or engineering the interference of electric and magnetic multipoles to satisfy Kerker
conditions as in Huygens antennas (9–11). Near-field directional routing can be achieved
by manipulating the local polarization or symmetries of confined fields, leading to the
discovery of directional dipole sources (12–14) and directional metasources (15). There
are three types of elemental directional dipoles: circular dipole, Huygens dipole, and
Janus dipole. The circular dipole (i.e., circularly polarized electric/magnetic dipole) can
excite unidirectionally propagating guided waves via spin-momentum locking (16–22),
with fascinating applications in topological photonics and non-Hermitian physics (23–
25) as well as in designing novel nanophotonic devices (26–28). The Huygens dipole can
give rise to directional power flow in both the near and far fields (29–32), which can be
employed to achieve vanished backscattering (33), cloaking (34), perfect reflection and
refraction (35, 36), and near-field optical microscopy (37). The Janus dipole has side-
dependent directional properties derived from the reactive power, exhibiting complete
near-field coupling or noncoupling to waveguides (13, 38–40).

The directional dipoles are usually realized by using different optical structures because
of their different physical mechanisms. The circular dipole, composed of a pair of
orthogonal electric/magnetic dipoles ±π/2 out of phase, can be realized in plasmonic
nanospheres under the excitation of circularly polarized light (3, 16). The Huygens
dipole and Janus dipole, composed of orthogonal electric and magnetic dipoles in phase
and ±π/2 out of phase, respectively, can be realized by tailoring high-index dielectric
nanospheres or nanocylinders supporting electric and magnetic Mie resonances (38, 41,
42). To facilitate the development of high-dimensional and multifunctional directional
sources for applications in integrated photonics and quantum optics, it is highly desired
to realize all the three directional dipoles and freely switch among them in one structure
and at the same frequency. However, this seems to be an unattainable goal considering
that they require different compositions of dipoles with different relative phases and
amplitudes.

Here, we demonstrate a general physical mechanism for the unified realization of
all three directional dipoles and the construction of a complete directionality space.
We show that the synergy of chirality and anisotropy can give rise to circular dipole,
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Huygens dipole, and Janus dipole in the same structure and at
the same frequency, under the excitation of a linearly polarized
plane wave. Such anisotropic chirality can be found in many
structures, such as a simple helix particle made of metal.
The magnetoelectric coupling of the helix particle enables the
excitation of electric and magnetic dipoles at the same frequency,
and the anisotropy enables the excitation of different dipoles in
different directions. The relative phase differences of the excited
electric and magnetic dipoles naturally satisfy the requirements
of the directional dipoles. Such a helix chiral particle gives rise to
the three directional dipoles in three orthogonal directions, which
enable selective manipulation of all types of optical directionality
pointing in orthogonal directions via different faces of the helix,
corresponding to a directional dipole dice (DDD). We show that
the switch of different directional dipoles can be easily achieved
by tuning the propagation and polarization directions of the
incident plane wave. Using a mode expansion theory, we uncover
that the emergence of the directional dipoles is attributed to the
selective excitation of the plasmonic resonance modes in the
helix. To characterize the unique properties of the DDD, we
employ multiple directional-dipole faces to achieve multiplexed
unidirectional excitation of guided waves and experimentally
demonstrate the phenomena at microwave frequencies.

Results

Mechanism and Realization. The directional dipoles correspond
to a combination of electric and/or magnetic dipoles whose
magnitudes and phases satisfy certain conditions. The circular
electric and magnetic dipoles can be defined as

De
cir =

(
pêi,±ipêj

)
,Dm

cir =
(
mêi,±imêj

)
, [1]

where p and m are the magnitudes of the electric and magnetic
dipole components, respectively. Here and in what follows, êi
and êj denote the unit axis vectors in the Cartesian coordinate
system with i, j = x, y, z and i 6= j. The directionality of the
circular dipoles is given by their spin S = Im

[(
De,m

cir
)∗
×De,m

cir
]
.

The Huygens dipole can be defined as (43)

DHuy =
(
pêi,±mêj

)
with p =

m
c
. [2]

Here, c is the speed of light in vacuum. The directionality of the
Huygens dipole is given by the time-averaged power flow (i.e.,
the real part of the Poynting vector): Re[P] = 1

2 Re [E×H∗].
The Janus dipole can be defined as (13)

DJan =
(
pêi,±imêj

)
with p =

m
c
. [3]

The directionality of the Janus dipole is given by the reactive
power (i.e., the imaginary part of the Poynting vector): Im[P] =
1
2 Im [E×H∗] (13). Therefore, we can assign the directions of
the spin S, the power flow Re[P], and the reactive power Im[P]
to be the directions of the circular dipole, the Huygens dipole,
and the Janus dipole, respectively.

The above directional dipoles can be realized by using passive
structures, such as subwavelength particles under the excitation
of electromagnetic waves. For an isotropic achiral particle, the
induced electric and magnetic dipoles can be expressed as p =
αeeE and m = αmmB, respectively, where E (B) is the incident
electric (magnetic) field and αee (αmm) is the electric (magnetic)
polarizability. For a circularly polarized incident plane wave

Table 1. Chirality-enabled directional dipoles
Polarizability Condition

Circular dipole �ee ←→ i�em �ee = ±�em/c
−i�em←→�mm �em = ±�mm/c

Huygens dipole �ee
←
→

i�em N.A.
−i�em �mm

Janus dipole �ee

←
→ i�em �ee = ±i�mm/c2

−i�em �mm

E = (êx ± iêy)E0eikz , this particle can give rise to circular
electric dipole De

cir =
(
êx ,±iêy

)
αeeE0 and circular magnetic

dipole Dm
cir =

(
êx ,±iêy

)
αmmE0/c. However, it is impossible

to simultaneously achieve the Huygens and Janus dipoles, which
require different relative phases between the electric and magnetic
dipoles (as in Eqs. 2 and 3).

For an isotropic chiral particle, the induced dipoles can be
expressed as [

p
m

]
=
[

αee iαem
−iαem αmm

] [
E
B

]
, [4]

where αem denotes the magnetoelectric polarizability derived
from the chirality of the particle. Under the excitation of a
linearly polarized incident plane wave E = êxE0eikz , the circular
electric dipole can be induced as De

cir =
(
αeeêx , iαem

c êy
)
E0

when αee = ±αem/c, and circular magnetic dipole can be
induced as Dm

cir =
(
−iαemêx , αmm

c êy
)
E0 when αem = ±αmm/c.

In addition, the Huygens dipole can be induced as DHuy =(
αeeêx , αmm

c êy
)
E0 when αee = ±αmm/c2, and it can also be

given by DHuy =
( 1
c êy,−êx

)
iαemE0 via the magnetoelectric

polarizability αem. Finally, the Janus dipole can be induced as
DJan =

(
αeeêx , αmm

c êy
)
E0 when αee = ±iαmm/c2. Therefore,

all the three directional dipoles can be simultaneously realized in
an isotropic chiral particle satisfying the following conditions:

αee = ±
iαmm

c2 = ±
αem

c
or αee = ±

iαmm

c2 = ±
iαem

c
. [5]

The above mechanisms are summarized in Table 1, where the
arrows indicate the combinations of polarizabilities that give rise
to the desired directional dipoles.

Although the above De,m
cir ,DHuy, and DJan can be realized

simultaneously, their directions overlap. In practical applications,
it is desired to have the directional dipoles point in orthogonal
directions to construct a complete directionality space, which
can enable the multiplexed control of directionality and the
realization of combined directional sources. This can be achieved
by combining chirality with anisotropy. For an anisotropic
chiral particle, the scalar polarizabilities in Eq. 4 are replaced
by the polarizability tensors ←→α ee, ←→α mm, and ←→α em. The
anisotropy provides additional degrees of freedom to realize
the circular dipole, Huygens dipole, and Janus dipole in
orthogonal directions. We consider, for example, a helix particle
with the center axis in the y direction. The magnetoelectric
polarizability tensor←→α em is dominated by the component αyyem.
Under the tilted incidence of a linearly polarized plane wave
E =

(
Ey êy + Ez êz

)
eikyy+ikzz , the circular electric dipole can be

induced in the ±y direction as De
cir =

(
α
xy
eeEy êx ,αzzeeEz êz

)
when

Arg
(
α
xy
ee
)
− Arg (αzzee ) = ±π/2. The Huygens dipole can be

induced in the ±x direction as DHuy =
(
αzzeeEz êz ,−iαyyemEy êy

)
2 of 10 https://doi.org/10.1073/pnas.2301620120 pnas.org
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when Arg
(
α
yy
em
)
− Arg (αzzee ) = ±π/2. The Janus dipole can

be induced in the ±z direction as DJan =
(
α
xy
ee êx ,−iαyyemêy

)
Ey

when αxyee = ±αyyem/c, or DJan =
(
α
yy
eeEy êy,αxxmmBx êx

)
when

Arg
(
α
yy
ee
)
− Arg (αxxmm) = ±π/2. We note that the relative

amplitudes of the field components Ey, Ez , and Bx in the above
expressions can be tuned by varying the incident angle. Therefore,
the anisotropic chiral particle can simultaneously realize all the
three directional dipoles in orthogonal directions under the
following conditions:

Arg
(
α
xy
ee
)
− Arg (αzzee ) = ±π/2,αxyee = ±αyyem/c, [6]

or

Arg
(
α
xy
ee
)
− Arg (αzzee ) = ±π/2,

Arg
(
α
yy
em
)
− Arg (αzzee ) = ±π/2,

Arg
(
α
yy
ee
)
− Arg (αxxmm) = ±π/2.

[7]

Here, we use the metallic helix particle in Fig. 1 to demonstrate
the mechanism. Such helices can be fabricated by using low-
temperature shadow deposition (44) and have been extensively
studied for their intriguing chiroptical properties (45), such
as circular dichroism (46), optical forces (2, 47), polarization
conversion (48), and vortex beam generation (49). We assume
that the incident plane wave is linearly polarized with the electric
fieldEinc = (− sin θ êy+cos θ êz)E0e(−ik0 cos θy−ik0 sin θz), where θ
is the incident angle between the wavevector k and −y direction,
and we have neglected the time-harmonic factor e−iωt . We will
show that the helix can give rise to three dipole components
px , pz , and my that constitute the three directional dipoles on
three faces of the DDD. Importantly, the spin S of the circular
dipole, the net power flow Re[P] of the Huygens dipole, and the
reactive power Im[P] of the Janus dipole point in−y,+x, and−z
directions, respectively, as shown in Fig. 1. The proposed DDD
can construct a complete directionality space, which enables
selective scattering and coupling from different directional-dipole
faces in three orthogonal directions, as shown by the bottom Inset
of Fig. 1. The DDD is surrounded by three sets of waveguide
channels to illustrate the face-multiplexed and high-dimensional
light routing, with each face of the DDD coupled unidirectionally
to one waveguide channel. The circular-dipole face of DDD can
excite the guided wave propagating unidirectionally in the +z
direction denoted by the red arrow. The Huygens-dipole face of
DDD can excite the guided wave propagating unidirectionally
in the +x direction denoted by the yellow arrow. The Janus-
dipole face of DDD can predominately couple light to the
top waveguide. With appropriate loss or termination in the
transparent part of the waveguide, the Janus dipole can excite
the guided wave propagating unidirectionally in the +y direction
denoted by the blue arrow. In addition, the directionality of each
dipole can be flexibly reversed by tuning the incidence. In the
Janus dipole case, the reversed directionality corresponds to the
excitation of the guided wave unidirectionally propagating in
the −y direction in the bottom waveguide channel. Therefore,
the setting in Fig. 1 allows the complete control of near-field
directionality in all three orthogonal directions.

Under the incidence of the plane wave, currents and charges
will be induced in the helix, and their oscillations give rise to
resonances of the helix. We conducted full-wave simulation
of the helix and computed its scattering cross-section for the
incident angle θ = 90◦. The results are shown in Fig. 2A as
the red symbol line. We notice that a resonance appears at the

Janus dipole

-Im[P]

-Re[P]
S

my

my

px
1
ic

ic

i

pz
pz

pxi
1

Circular dipoleHuygens dipole

JD
CD

HD

x

z
y

x

-y
k

E

z

θ

Fig. 1. Schematic of the DDD realized by a metallic helix particle. The
circular dipole (CD), Huygens dipole (HD), and Janus dipole (JD) feature on
three faces of the “dice.” The large arrows denote the directions of the
directional dipoles defined by the spin S, the power flow Re[P], and the
reactive power Im[P]. The incident linearly polarized plane wave propagates
in the yz-plane, forming an angle � with the −y axis. Bottom Inset: The DDD
can construct a complete directionality space, achieving face-multiplexed and
high-dimensional routing of the guided waves via different dipole faces in
different directions.

frequency of 108 THz. We then apply multipole expansions
and decompose the scattering cross-section into contributions
of multipoles. As seen, the scattering cross-section is dominated
by the electric dipole (Cp

sca) denoted by the red dashed line.
The contribution of magnetic dipole (Cm

sca), denoted by the
blue dashed line, is negligible. The sum Cp

sca + Cm
sca well agrees

with the full-wave numerical result, demonstrating the validity
of the multipole expansions. The weightings of the electric
and magnetic dipoles at the resonance frequency can be tuned
by varying the incident angle θ . Fig. 2B shows the relative
amplitudes of px , pz , and my as a function of θ . We notice
that

∣∣pz∣∣ / ∣∣px∣∣ and
∣∣pz∣∣ / ∣∣my/c

∣∣ reduce as θ increases, which
is due to a smaller z component of the incident electric field at a
larger θ . Interestingly,

∣∣px∣∣ / ∣∣my/c
∣∣ ≈ 1 for a wide range of the

incident angle. Fig. 2C shows the relative phases of px , pz , and my

PNAS 2023 Vol. 120 No. 25 e2301620120 https://doi.org/10.1073/pnas.2301620120 3 of 10
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Fig. 2. Electric and magnetic dipole moments induced in the helix. (A) The
scattering cross-section of the helix particle and the contributions of the
electric and magnetic dipoles. (B and C) The relative amplitudes and phases
of the dipole components as a function of the incident angle of the linearly
polarized plane wave. The dashed line marks the parameters giving three
directional dipoles.

as a function of θ . As seen, Arg (pz) − Arg (px) = 90◦,
Arg (pz) − Arg

(
my
)

= 180◦, and Arg (px) − Arg
(
my
)

= 90◦
over a broad range of θ . In particular, the induced dipoles
satisfy pz/px = i, pz/

(
my/c

)
= −1, and px/

(
my/c

)
= i

simultaneously at θ = 20◦, corresponding to a circular dipole, a
Huygens dipole, and a Janus dipole, respectively. We note that
the physical mechanism is robust and can be realized with other
geometric parameters or at other frequencies (e.g., microwave
frequencies). Another design of the gold helix with a different set
of parameters is provided in SI Appendix, Fig. S2; a realization at
microwave frequencies is provided later.

Mode Expansion Analysis. The remarkable property of the helix
particle can be understood with a mode expansion theory, where
we apply three steps to determine its response under external

excitations. We first analytically obtain the eigen currents of the
helix and use them to construct the Green’s function. Then, we
apply the Green’s function to determine the induced currents
in the helix under the external excitations. Finally, the induced
currents are used to calculate the electric and magnetic dipoles,
which constitute the three directional dipoles. The results of this
analytical method are compared with the full-wave numerical
results to demonstrate its validity and accuracy.

Since the metal helix can be obtained by twisting a nanorod
into a helical shape, its eigenmodes correspond to the eigenmodes
of the nanorod mapped onto the helical path defined by the
helix (50), as long as the helix pitch is large enough so that
couplings between helix turns are negligible. The eigenmodes of
the nanorod are one-dimensional (1D) standing surface charge
waves (i.e., currents) with eigenfrequency ωn and propagation
constant γn. These eigen currents are approximately uniform
on the cross-section of the nanorod since the radius of the
nanorod r � λ. The expressions of the eigen currents can be
obtained semianalytically, from which we can determine the
eigen currents Jn of the helix via a mapping. By constructing
the Green’s function using the eigen currents, we can then
analytically determine the response of the helix under arbitrary
external excitation, and the induced dipoles can be expanded as
p =

∑
n Bnanpn, m =

∑
n Bnanmn, where pn = i

ω

∫
Jn(r)dVp

andmn = 1
2
∫
r×Jn(r)dVp are the dipoles attributed to the eigen

current Jn, Bn is the excited mode amplitude, and an(ω) is the
excitation-independent expansion coefficient containing holistic
resonance characteristics of the helix. The eigen current Jn with
odd values of n gives rise to the dominant dipole components
(Materials and Methods)

(pn)x =
iσCR
ω

(
sinφn
γn − K

+
sinφn
γn + K

)
,

(pn)y =
iCP sinφn
πωγn

, (pn)z = 0,

(mn)y =
−σCR2 sinφn

γn
,

[8]

where C = 2Nπ2r2/L, φn = γnL/2, K = 2πN/L, N is the
number of turns of the helix, L is arc length of the helix, and
σ = +1 (σ = −1) for the left- (right-) handed helix. The eigen
current Jn with even values of n gives rise to the dominant dipole
components

(pn)x = 0, (pn)y = 0,

(pn)z =
iCR
ω

(
sinφn
γn − K

−
sinφn
γn + K

)
,

(mn)y = 0.

[9]

Eqs. 8 and 9 indicate that different eigenmodes contribute
to different dipole components. The odd-order eigenmodes will
generate px , py, and my, while the even-order eigenmodes will
only generate pz . At the eigen frequencies, we have γnL ≈ nπ .
Thus, (pn)z in Eq. 9 vanishes for even values of n except for
n = 2N , i.e., pz is mainly contributed by the eigenmode of the
order n = 2N . In addition, the odd-order eigenmodes account
for the chirality of the helix because it can generate both electric
and magnetic dipoles. The odd- and even-order eigenmodes
contribute to electric dipoles in orthogonal directions, which
account for the anisotropy of the helix. The synergy of chirality
and anisotropy via the two types of eigenmodes can give rise to the

4 of 10 https://doi.org/10.1073/pnas.2301620120 pnas.org
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Fig. 3. Mode expansion analysis of the helix. (A) The charge (denoted by plus and minus symbols) and current (denoted by black arrowed curves) distributions
of the first-order and fourth-order eigenmodes of the helix. (B) The amplitudes and phases of the electric dipoles px , py , and (C) the magnetic dipole my
dominating in the first-order eigenmode. (D) The amplitude and phase of the electric dipole pz dominating in the fourth-order eigenmode. The symbols denote
the numerical results, while the solid lines denote the analytical results of the mode expansions.

desired directional dipoles. In addition, the switching of different
directional dipoles can be achieved by selectively exciting the
eigenmode, i.e., tuning the mode amplitude Bn, which depends
on the propagation direction and polarization direction of the
incident field.

We apply the mode expansion theory to analytically determine
the induced dipoles in the helix for various incident angles.
We find that tilted incidence will predominantly excite the
eigenmodes of the orders n = 1, 4. The charge and current
distributions of the two modes are shown in Fig. 3A, where
it is evident that they mainly generate dipole components
px , py, pz , and my. For the n = 1 eigenmode, the positive and
negative charges accumulate at the ends of the helix, giving rise
to px and py; the current flows in one direction and gives rise to
my. Fig. 3 B and C shows the comparisons between the analytical
(lines) and numerical results (symbols) of px , py, and my, which
show good agreements. For the n = 4 eigenmode, the positive
and negative charges oscillate along the z direction, generating the
dipole component pz , as illustrated in Fig. 3A, while the current
changes direction periodically in space, leading to vanished
magnetic dipole. Fig. 3D shows the comparison between the
analytical (lines) and numerical (symbols) results of pz , which
again exhibits good consistency.

The above electric and magnetic dipole components can fulfill
the conditions of the three directional dipoles in Eqs. 1–3. This
can be understood as follows. First, the emergence of both px and
my in the first eigenmode is attributed to the chirality of the helix,

and their relative amplitudes can be tailored by the geometry
of the helix to satisfy

∣∣px∣∣ =
∣∣my

∣∣ /c. In addition, the charge-
induced electric dipole px and the current-induced magnetic
dipolemy have an intrinsic phase difference ofπ/2. Thus, the first
eigenmode can give rise to a Janus dipole DJan =

(
px êx , my êy

)
with px/

(
my/c

)
= i irrespective of the incident angle. Second,

the different values of px and pz are attributed to the anisotropy of
the helix. Their relative amplitude can be tuned by the incident
angle of the plane wave because the incident fields Ey and Ez can
excite the first-order and fourth-order eigenmodes, respectively.
At an appropriate angle (corresponding to the dashed line in
Fig. 2B), one can obtain

∣∣px∣∣ =
∣∣pz∣∣. We notice that the first

eigenmode is on resonance, while the fourth eigenmode is off
resonance, which indicates that px of the first-order eigenmode
and pz of the fourth-order eigenmode have a phase difference of
π/2. Therefore, the first-order and fourth-order eigenmodes can
give rise to a circular electric dipole De

cir = (px êx , pz êz) with
pz/px = i. Third, with the combined effect of the chirality
and anisotropy of the helix, the first-order and fourth-order
eigenmodes can give rise to the Huygens dipole DHuy =(
pz êz , my êy

)
with

(
px/

(
my/c

))
× (pz/px) = pz/

(
my/c

)
= −1.

The eigenmode analysis can also explain why the phase
differences between different dipole components are insensitive
to the incident angle θ , corresponding to the results in Fig. 2C.
As shown in Fig. 3A, the response of the helix is dominated
by the first-order and fourth-order eigenmodes. The first-order
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eigenmode gives rise to px , py, and my. Thus, their phase differ-
ences are intrinsic properties of the eigenmode and do not depend
on the excitation properties (including the incident angle). This
explains the constant phase difference between px and my,
corresponding to the black line in Fig. 2C. In addition, varying
the incident angle does not change the relative phase of the
excited first-order and fourth-order eigenmodes. This is because
their excitations are attributed to the incident electric field only,
which is approximately constant over the deep-subwavelength
helix and is independent of the incident angle. Therefore, the
phase differences between pz of the fourth-order eigenmode and
px , my of the first-order eigenmode (corresponding to the blue
and red lines in Fig. 2C ) are insensitive to the incident angle.

Complete Directional Excitation of Guided Waves. The DDD
can be employed to achieve face-multiplexed directional scatter-
ing and coupling of electromagnetic waves, corresponding to the
scenario in Fig. 1. As a demonstration, we consider the helix
located near the surface of a silicon waveguide and under the
excitation of an incident plane wave, as shown in Fig. 4A. The
coupling between the helix particle and the waveguide can be
expressed as (3)

κpw ∝
∣∣p · E∗ + m · B∗

∣∣ , [10]

where E and B are electric and magnetic fields of the guided
mode at the location of the dipoles p and m. In the presence
of the waveguide, the induced electric and magnetic dipoles
are generally different from those of an isolated helix due
to the reaction field from the waveguide (51). To achieve
high directionality, the directional dipoles can be optimized
to satisfy the condition

∣∣p · E∗ + m · B∗
∣∣ = 0, which leads to
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Fig. 4. Directional excitation of guided wave by the circular-dipole face
of the helix. (A) Schematic of the helix-waveguide coupling configuration
for demonstrating the directionality of the circular dipole. (B) The relative
amplitude and phase of the electric dipoles pz and px as a function of
polarization angle '. The incident angle is � = 15◦. (C) Unidirectional coupling
to the waveguide induced by the optimized circular dipole (OCD) in the helix.
(D) Magnetic field amplitude in the waveguide for the ideal circular dipole and
the optimized circular dipole.

vanished coupling κpw for the guided mode with fields E and
B, according to Eq. 10. Once the fields of the guided mode are
known, we can apply the condition to determine the directional
dipoles. Following the terminology in ref. 13, we call them
the optimized directional dipoles to differentiate them from the
ideal directional dipoles defined in Eqs. 1–3. The optimization
can be easily done via tuning the polarization direction of
the incident plane wave Einc = (sinϕêx − sin θ cosϕêy +
cos θ cosϕêz)E0e−ik0(cos θy+sin θz), where ϕ is the polarization
angle defined as the projection angle of Einc on the zy-plane,
as shown in Fig. 4A. In the following demonstrations of the
directional excitation of guided waves, the ideal and optimized
directional dipoles are all realized by the passive helix particle
through tuning the incident angle θ and the polarization angle ϕ
of the plane wave.

We first demonstrate the directional excitation of guided wave
with the circular-dipole face of the DDD. The silicon waveguide
supports a fundamental TE guided mode at the dipole resonance
frequency of the helix (i.e., 108 THz). As shown in Fig. 4A, the
helix is located d = 80 nm near the waveguide surface parallel
to the yz-plane, and its axis is in the y-direction to switch on
the directionality of electric circular dipole De

cir = (px êx , pz êz).
By adjusting the incident angle θ and the polarization angle ϕ,
the helix can realize an optimized circular dipole (i.e., elliptical
dipole) with pz/px = −E∗x /E

∗
z = 1.2i in the presence of

the waveguide, as marked by the dashed line in Fig. 4B. This
dipole can excite guided wave propagating unidirectionally in
the +z direction in the silicon waveguide because κpw

(
+kwg

)
�

κpw
(
−kwg

)
, where κpw

(
±kwg

)
is the coupling coefficient for the

guided wave propagating in the ±z direction. The directionality
is clearly observed in the Hy field of the system for θ = 15◦
and ϕ = −5◦, as shown in Fig. 4C. Fig. 4D shows the
distribution of |Hy| inside the waveguide induced by the ideal
circular dipole (solid blue line) and the optimized circular dipole
(solid yellow line) of the helix. The directionality, defined as∣∣Hy

(
+kwg

)∣∣ / ∣∣Hy
(
−kwg

)∣∣, reaches 52 for the optimized circular
dipole and 10 for the ideal circular dipole.

To demonstrate the directional excitation of guided wave with
the Huygens-dipole face of the DDD, we place the helix near
the waveguide surface parallel to the zx-plane with a distance
of d = 80 nm, as shown in Fig. 5A, which enables matching
between the Huygens dipole DHuy =

(
pz êz , my êy

)
and the fields

of the guided wave
(
Ez , By

)
. By tuning the incident angle θ and

polarization angleϕ to satisfy
∣∣∣pzE∗z + myB∗y

∣∣∣→ 0 for the guided
wave propagating in the −x direction, we obtain the optimized
Huygens dipole with pz/

(
my/c

)
= −cB∗y /E

∗
z = −3.6 at θ =

5◦ and ϕ = −5◦, as shown in Fig. 5B. Fig. 5C shows the electric
field Ez of the guided wave excited by the optimized Huygens
dipole, which propagates predominantly in the +x direction. In
Fig. 5D, we plot the electric field inside the waveguide excited
by the optimized Huygens dipole (solid yellow line), which has
a directionality of 24 and is much larger than the directionality
of the ideal Huygens dipole (solid blue line).

To demonstrate the directional excitation of guided wave with
the Janus-dipole face of the DDD, we place the helix d = 80
nm above/below the waveguide surfaces parallel to xy-plane to
turn on the directionality of DJan =

(
px êx , my êy

)
, as shown in

Fig. 6A. The directionality of the Janus dipole manifests as side-
dependent coupling/noncoupling to the waveguide (13), i.e.,
whether it couples to the waveguide depends on which side of
the helix is facing the waveguide. To achieve a high directionality,
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Fig. 5. Directional excitation of guided wave by the Huygens-dipole face
of the helix. (A) Schematic of the helix-waveguide coupling configuration
for demonstrating the directionality of the Huygens dipole. (B) The relative
amplitude and phase of the dipoles pz and my as a function of polarization
angle '. The incident angle is � = 5◦. (C) Unidirectional coupling to the
waveguide induced by the optimized Huygens dipole (OHD) in the helix. (D)
Electric field amplitude in the waveguide for the ideal Huygens dipole and
the optimized Huygens dipole.

we optimize the Janus dipole by requiring
∣∣∣pxE∗x + myB∗y

∣∣∣→ 0
for the coupling between the helix and waveguide, which gives
px/

(
my/c

)
= −cB∗y /E

∗
x = 2.5i at incident angle θ = 75◦ and

polarization angle ϕ = 74◦, as shown in Fig. 6B. Fig. 6C shows
the electric field Ex in the waveguide when the helix locates below
and above the waveguide, respectively. As seen, the guided wave
can be excited only if the optimized Janus dipole locates below
the waveguide. Fig. 6D shows the electric field amplitude |Ex|
inside the waveguide for the two configurations in Fig. 6C. The
solid (dashed) yellow line denotes the result for the case of the
helix located below (above) the waveguide. The directionality
in this case is defined as the ratio between the solid and dashed
yellow lines, and it achieves a value of 40. For comparison, we also
show the results of the ideal Janus dipole of the helix in Fig. 6D
denoted by solid (dashed) blue lines, which has the directionality
of 2.5. To further achieve unidirectional propagation of the
excited guide wave in the +y or −y direction with the Janus
dipole, we can simply add loss to one half of the waveguide or
truncate the waveguide (SI Appendix, Fig. S6).

The directionality of all three dipoles can be easily flipped by
tuning the propagation and polarization directions of the incident
plane wave (see the demonstration in SI Appendix, Figs. S3–S5).
By combining the three configurations in Fig. 4A, Fig. 5A, and
Fig. 6A, we obtain the high-dimensional and multifunctional
system in Fig. 1. Demonstration of light routing with this system
is shown in SI Appendix, Fig. S6. The amplitude of directionality
can still reach around 10 in the presence of the coupling among
the waveguides, exhibiting robustness of the mechanism.

Microwave Experiments. We experimentally demonstrate the
fascinating directional scattering and coupling of the DDD in
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Fig. 6. Directional excitation of guided wave by the Janus-dipole face
of the helix. (A) Schematic of the helix-waveguide coupling configuration
for demonstrating the directionality of the Janus dipole. (B) The relative
amplitude and phase of the dipoles px and my as a function of polarization
angle '. The incident angle is � = 75◦. (C) When the optimized Janus dipole
(OJD) of the helix is located below the waveguide, it can couple to the
waveguide and excite the guided modes propagating in both directions.
However, when the OJD is located above the waveguide, there is no coupling.
(D) Electric field amplitude in the waveguide (WG) for the ideal Janus dipole
(Top panel) and the optimized Janus dipole (Bottom panel).

the microwave regime. A photo of the experimental setup is
shown in Fig. 7. We use a copper helix supporting the dipole
resonance at 2.35 GHz. A horn antenna connected to Port 1
of a Vector Network Analyzer (VNA) provides the plane wave
excitation. The antenna is mounted on a stand that allows
angular rotations amounting to variations in the propagation
and polarization directions of the incident wave (i.e., θ and
ϕ). The plane wave excites the appropriate dipoles of the helix,
which couple waves into the dielectric waveguide in a directional
manner. Both ends of the dielectric waveguide feature tapers to
optimize coupling into open-ended WR-430 metallic waveguide
launchers, which are connected to Ports 2 and 3 of the VNA. This
setup enables us to measure the coupling strength by comparing
the power sent through Port 1 to the powers received at Ports
2 and 3 respectively. By tuning the directions of incidence and
polarization, the helix can operate as a DDD to realize near-field
directional waveguiding.

In the circular-dipole experiment, the helix-waveguide con-
figuration follows the settings in Fig. 4A. The helix is placed
near the dielectric waveguide with the gap distance of 2 mm,
as shown in the Inset of Fig. 8A. The symbol lines in Fig. 8A
show the simulated and experimental amplitude directionality as

PNAS 2023 Vol. 120 No. 25 e2301620120 https://doi.org/10.1073/pnas.2301620120 7 of 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 R

U
N

 R
U

N
 S

H
A

W
 L

IB
R

A
R

Y
 o

n 
Ju

ne
 1

6,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

14
4.

21
4.

40
.1

24
.

https://www.pnas.org/lookup/doi/10.1073/pnas.2301620120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2301620120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2301620120#supplementary-materials


     MWG1
(VNA Port 2)

Horn antenna
 (VNA Port 1) 

     MWG2
(VNA Port 3)

DWG Helix

Fig. 7. Experiment setup. A horn antenna that excites the helix is mounted
on a stand that allows azimuthal and elevation rotations. The dielectric
waveguide (DWG) transitions into metallic waveguide (MWG) launchers on
both ends.

a function of the polarization angle ϕ when θ = 7◦. As seen, the
helix can numerically realize an optimized circular dipole with the
directionality of 18.5 at (θ ,ϕ) = (7◦, −52◦). The experimental
directionality, given by the ratio of the received amplitude signals
at Ports 2 and 3 (

∣∣Eout
2
∣∣ / ∣∣Eout

3
∣∣ = |S21| / |S31|

)
exhibits a peak

at ϕ = −52◦. The high directionality value of 6.1 indicates the
achievement of superior coupling to Port 2, which accounts for
97.4% of the total coupled power as shown in Fig. 8B. For the
Huygens-dipole experiment, we follow the configuration settings
in Fig. 5A and place the helix near the dielectric waveguide with
the gap distance of 2 mm as shown in the Inset of Fig. 8C. We
again plot the simulated and measured directionality as a function
of ϕ (for θ = 7◦) in Fig. 8C. As seen, the helix can numerically
realize an optimized Huygens dipole at (θ ,ϕ) = (7◦, 18◦), with
a simulated directionality of 35. The experimental directionality
(
∣∣Eout

2
∣∣ / ∣∣Eout

3
∣∣ = |S21| / |S31|

)
reaches a peak value of 8.9 at

ϕ = 20◦, where 98.8% of the coupled power is received at

Port 2 as shown in Fig. 8D. For the circular and Huygens
dipoles of the DDD, the simulation and experiment results show
great agreement, which verifies the robustness of our proposed
mechanism.

In a slight deviation from the settings in Fig. 6A, in order
to overcome a wave blockage phenomenon, we adopt an alter-
native excitation geometry in demonstrating the side-dependent
coupling property of the Janus dipole (SI Appendix, Fig. S8).
Fig. 8E shows the placement of the helix midway between the
two dielectric waveguides with a gap distance of 75 mm. In
this approach, the incident direction of the plane wave (the
wavevector k) is on the xy plane, such that the line of sight from
the feed antenna to the helix is unobstructed by the waveguides.
The optimization of the Janus dipole can be achieved by tuning
the incident angle θ (the angle between k and −y) and rotation
angle ψ (the angle between the helix axis and y direction)
on the xy plane. Fig. 8E shows the simulated and measured
amplitude directionality of the Janus dipole as a function of
ψ when θ = 40◦, where the directionality is defined as the
ratio of the field coupled to the top waveguide (Port 2 + Port
3) and bottom waveguide (Port 4 + Port 5). As seen, the helix
can numerically realize an optimized Janus dipole with a direc-
tionality of about 20 at (θ ,ψ) = (40◦, 32◦). The experimental
directionality, given by

(∣∣Eout
2
∣∣+ ∣∣Eout

3
∣∣) / (∣∣Eout

4
∣∣+ ∣∣Eout

5
∣∣) =

(|S21|+ |S31|) / (|S41|+ |S51|), reaches a peak value of about
6 at ψ = 32◦. At this directionality, nearly 97.0% of
the power couples to the top waveguide as shown in
Fig. 8F. The simulation and experiment results show good
consistency.

Discussion

In conclusion, we theoretically and experimentally demonstrate
that the synergy of chirality and anisotropy can enable the
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realization of the DDD to give the circular dipole, Huygens
dipole, and Janus dipole under the excitation of a linearly
polarized plane wave at the same frequency. We apply the
three directional dipoles on different faces of the DDD to
realize complete control of directional optical coupling to the
dielectric waveguide in the infrared regime. The phenomena are
experimentally verified in the microwave regime using a copper
helix placed near dielectric waveguides. The emergence of the
directional dipoles in the helix particle can be well understood
based on a mode expansion theory. It is found that chirality
gives rise to the Janus dipole via the odd-order eigenmodes of
the helix; anisotropy gives rise to the circular dipole via both the
odd-order and even-order eigenmodes; anisotropy and chirality
together generate the Huygens dipole via the odd-order and even-
order eigenmodes. The analytical theory enables straightforward
designing of optimal multifunctioned directional sources for arbi-
trary waveguides. The proposed DDD can enable the multiplexed
control of near-field and far-field directionality via three different
degrees of freedom: spin, power flow, and reactive power. The
circular-dipole face and the Janus-dipole face of the DDD can be
employed to achieve light routing in photonic integrated circuits
and to realize asymmetric coupling of resonators for exploring
non-Hermitian physics. The Huygens-dipole face of the DDD
can find essential applications in designing highly directional
quantum sources and nonreflecting metasurfaces. The unified
realization and control of all three types of directionalities in
orthogonal directions open numerous opportunities for realizing
multiple functionalities in the high-dimensional space by a single
meta-atom or metasurface, where the circular, Huygens, and
Janus directional properties can be freely switched upon different
incidence. A metastructure of this element can also be constructed
with multiple resonances intertwined to couple together different
types of directionality, which can further enrich the ability of
light manipulation. The possibilities are vast. The mechanism
may also be extended to other classical waves such as sound
waves.

Materials and Methods
Mode Expansion Theory. The eigenmodes of the metal helix can be
determined by mapping the eigenmodes of the corresponding nanorod, which
can be semianalytically determined as follows. The eigenmodes of the nanorod
are Fabry–Perot standing waves of currents with eigenfrequenciesωn satisfying
(52):

ωn
√
µ0ε0neff(ω)L +8(ω) = nπ , [11]

where L = N
√

4π2R2 + P2 is the arc length of theN−turn helix, n is the order
of the eigenmodes, neff (ω) is the effective refractive index of propagating
surface plasmon, and 8(ω) is the reflection phase at the ends of the helix.
The values of neff (ω) and 8(ω) are approximately constant for a fixed r
over a range of frequencies, and they can be numerically determined via
solving for the TM0 guided mode of the nanorod (53). Eq. 11 allows us to
analytically calculate the eigenfrequency ωn and the propagating constant
γn(ω) = ωn

√
µ0ε0neff (ω) of the current wave. The currents on the nanorod

can be approximately expressed as cos (γnl) for odd orders and sin (γnl) for
even orders with l ∈ [−L/2, L/2]. The eigen currents of the helix can be obtained
by mapping these currents of the nanorod as

Jn =

{
cos (γnl) t, n = 1, 3, 5, . . .
sin (γnl) t, n = 2, 4, 6, . . . [12]

with t = (σ2πNR
L cos( 2πNl

L + Nπ), NPL ,
2πNR
L sin( 2πNl

L + Nπ)) being
the tangent direction vector of the helix path. The Green’s function of

the helix can be constructed as G
(
r, r′
)

=
∑

n
Jn(r)J∗n(r

′)

An
(
ω2
n−ω

2−iωγ
)
ω2
n

=

∑
n an(ω)Jn(r)J∗n

(
r′
)

(52), where An is the normalization coefficient of
the eigen current Jn at eigenfrequency ωn. The expansion coefficient an(ω)
contains holistic resonance characteristics of the helix and is independent of
the excitation. It can be numerically determined based on the induced current
density

J(r) = −iω3ε2
0 (1εr)

2 µ

∫
G
(
r, r′
)
· E
(
r′
)

dVp

=
∑
n

BnanJn(r), [13]

where

Bn = −iω3ε2
0 (1εr)

2 µ

∫
J∗n
(
r′
)
· E
(
r′
)

dVp.

Here, 1εr = εAu − 1 is the relative permittivity contrast between the helix
particle and the background medium (i.e., free space). The integral

∫
J∗n
(
r′
)
·

E
(
r′
)

dVp is evaluated over the volume of the helix particle Vp. The coefficient
an can be determined after one simulation of the induced current, with which
we then can analytically calculate the induced dipoles for any excitations as

p =
i
ω

∫
J(r)dVp =

∑
n

Bnanpn, [14]

and

m =
1
2

∫
r× J(r)dVp =

∑
n

Bnanmn, [15]

wherepn = i
ω

∫
Jn(r)dVp andmn = 1

2
∫
r×Jn(r)dVp are dipoles attributed

to the eigen current Jn. For odd values of n in Eq. 12, the dominant dipole
components are

(pn)x =
iσCR
ω

(
sinφn
γn − K

+
sinφn
γn + K

)
,

(pn)y =
iCP sinφn
πωγn

, (pn)z = 0,

(mn)y =
−σCR2 sinφn

γn
,

[16]

where C = 2Nπ2r2/L,φn = γnL/2, K = 2πN/L, N is the number of turns of
the helix, L is arc length of the helix, and σ = +1 (σ = −1) for the left (right)
handed helix. For even values of n in Eq. 12, the dominant dipole components
are

(pn)x = 0, (pn)y = 0,

(pn)z =
iCR
ω

(
sinφn
γn − K

−
sinφn
γn + K

)
,

(mn)y = 0.

[17]

Numerical Simulations. All the full-wave numerical simulations are performed
with the package COMSOL Multiphysics (www.comsol.com). For the simulation
of the gold helix at optical frequencies, we set the pitch P = 75 nm, outer
radius R = 46 nm, and inner radius r = 11 nm (refer to the Inset in Fig. 2A
for the definition of the geometric parameters). The center axis of the helix is
along the y direction. The relative permittivity of the gold helix is characterized
by the Drude model εAu = 1 − ω2

p/
(
ω2 + iωωt

)
, where ωp = 1.36 ×

1016 rad/s andωt = 7.1 × 1013 rad/s (54). The silicon waveguide (relative
permittivity εSi = 12) in Figs. 4–6 has a rectangular cross-section of w × t =
620 nm × 310 nm. The electric field amplitude of the incident plane wave is
set to be E0 = 1 V/m in all simulations. In the simulations of the directional
excitations of guided wave, we apply absorption boundary conditions on both
ends of the waveguide to suppress any reflections. Beyond the waveguide
region, an open boundary condition is applied.
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Experiments. The helix is made of copper with the electrical conductivity σ =
5.813×107 S/m. It has pitch P = 8 mm, outer radiusR = 5.5 mm, and inner
radius r = 0.5 mm. The dielectric waveguide with εr = 12 was fabricated by
CNC technology. It has a cross-sectional dimension of 30 mm × 15 mm and
a length of 620 mm. The length of the taper at both ends of the waveguide
is 60 mm. The experimental setup shown in Fig. 7 can be considered a 3-port
network. The source is a double-ridged waveguide antenna that supports an
output mode of linearly polarized plane wave. The antenna is located 350 mm
away from the helix particle and has an output power of−8 dBm. The couplings
from the source antenna (Port 1) to the waveguide outputs (Ports 2 and 3)
via the helix can be directly determined by measuring the S-parameters S21
and S31. The Janus system in Fig. 8E corresponds to a 5-port network, where
the couplings to waveguide outputs (Ports 2–5) were determined similarly by
measuringtheS-parametersS21, S31, S41,andS51.Abackgroundmeasurement
is taken whereby [S] bkgd is measured when the helix is absent from the
experimental setup. This measurement picks up faint spurious signals directly
coupled from the source antenna to the waveguide outputs or scattered by other
objects within the measurement chamber. Performing a background calibration

[S] = [S]helix − [S]bkgd minimizes these background contributions to the
measurement.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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